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1 Introduction
An agent faces a decision problem under uncertainty, whose payoff u (a, ω) de-
pends on her action a ∈ A and the state of the world ω ∈ Ω. The agent does
not know ω but observes an informative random signal s ∈ S, drawn according
to the information structure σ : Ω → ∆ (S), which specifies the conditional
probability σ (s|ω) of observing signal s when the state is ω.

Blackwell (1951, 1953) proved that three different methods to rank infor-
mation structures generate the same order. The first ranking comes from a
notion of “adding noise”: Say that σ′ is a garbling of σ if an agent who knows
σ could replicate σ′ by randomly drawing a signal s′ ∈ S′ after each observation
of s ∈ S, i.e. there exists a function γ : S → ∆ (S′) (the garbling) such that

σ′ (s′|ω) =
∑
s∈S

γ (s′|s)σ (s|ω) .

The second ranking comes from a notion of feasibility: Given σ, a mixed strategy
α : S → ∆ (A) induces a distribution over actions conditional on ω. We can then
rank σ and σ′ according to which yields the larger set of feasible conditional
distributions of actions. The third ranking comes from thinking in terms of
expected utility: Say that σ is more informative than σ′ if every Bayesian agent,
facing any decision problem, can obtain a higher expected utility using σ than
by using σ′. Blackwell’s theorem can then be stated thus:

Theorem 1. The following statements are equivalent:

1. σ′ is a garbling of σ;

2. The set of conditional distributions over actions that are feasible under σ
contains those that are feasible under σ′;
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3. Every Bayesian agent prefers σ to σ′, for any possible decision problem.

The purpose of this note is to provide a simple proof of this theorem. Blackwell’s
original proof was rather involved and there have been other attempts to sim-
plify it (Crémer (1982), Bielinska-Kwapisz (2003), Leshno and Spector (1992)).
These papers represent information structures and garblings as matrices and
use matrix algebra to derive the result. The proof presented here uses the cat-
egorical properties of stochastic maps, avoiding cluttering notation that comes
from working with matrices. These categorical properties have been implicitly
used by Lehrer et al. (2013) in recent work, but have not been explicitly used
before.

The ideas present in the proof can be useful to think about information
in other contexts as well. To illustrate this, I show two other applications:
to information that arrives over time, reformulating a result of Greenshtein
(1996), and to information in strategic environments, deriving the concept of
Independent Garbling (Lehrer et al., 2010).

2 The category of stochastic maps
Given a finite setX, let ∆ (X) denote the set of probability distributions overX.
A stochastic map between two finite sets X and Y is a function α : X → ∆ (Y ).
Given two stochastic maps α : X → ∆ (Y ) and β : Y → ∆ (Z), their composition
is the stochastic map β ◦ α : X → ∆ (Z) defined by

β ◦ α (z|x) =
∑
y∈Y

β (z|y)α (y|x) .

This composition operation is associative: given another stochastic map γ :
Z → ∆ (W ), we can write

(γ ◦ β) ◦ α = γ ◦ (β ◦ α) =
∑
z∈Z

∑
y∈Y

γ (w|z)β (z|y)α (y|x)

and the order of summation does not matter.
A special stochastic map is the identity map idY : Y → ∆ (Y ), which takes a

point y ∈ Y to the measure δy ∈ ∆ (Y ) that puts probability 1 on y. The identity
map has the property that given any maps α : X → ∆ (Y ) and β : Y → ∆ (Z),
we have idY ◦ α = α and β ◦ idY = β. The existence of an identity, together
with the associativity property of composition, formally make stochastic maps
a category1 As is typical in category theory, we will often represent stochastic
maps as diagrams of arrows between finite sets, and say that such a diagram

1A category is a collection of objects (X, Y , Z etc), arrows between objects (α,β,γ etc)
and a binary operation ◦, which takes two arrows α : X → Y and β : Y → Z into a new
arrow β ◦ α : X → Z, satisfying two properties: (1) Every object Y has an identity arrow
idY : Y → Y such that for any α : X → Y we have idY ◦ α = α and for any β : Y → Z we
have β ◦ idY = β and (2) ◦ is associative (Mac Lane, 1978, page 7).
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commutes if any two paths with the same beginning and end define the same
stochastic map through composition. For example, saying that the diagram

A

α′

��

α
// B

β

��
B′

β′
// C

commutes is to say that β ◦ α = β′ ◦ α′.

3 Garblings and strategies
Information structures, garblings and strategies are all stochastic maps. Thus,
Condition (1) in Theorem 1 can be succintly stated as the existence of a stochas-
tic map γ such that σ′ = γ ◦ σ. In a diagram,

Ω

σ′

��

σ // S

γ��
S′

Likewise, the conditional distribution over actions induced by a strategy α is
simply α ◦ σ. Condition (2) in the statement of Blackwell’s theorem can be
stated in a diagram as “for every α′ there exists an α such that the following
diagram commutes:”

Ω

σ′

��

σ // S

α

��
S′

α′
// A

The expected utility of a strategy only depends on the conditional probability
over actions, for it can be written as∑

ω

(∑
a∈A

u (a, ω)α ◦ σ (a|ω)
)
p (ω) ,

where u : A× Ω→ R is the utility function and p is the prior.

4 Proof of Blackwell’s Theorem
(1)⇒(2). We can see this by simply completing the diagram that defines a
garbling by defining α = γ ◦ α′:

Ω

σ′

��

σ // S
γ

~~
γ◦α′

��
S′

α′
// A
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This diagram commutes, so we have (2).
(2)⇒(1). Let α′ be the identity map for the signals of σ’, IdS′ . Condition

(2) tells us that there exists an α that makes the following diagram commutes

Ω

σ′

��

σ // S

α

��
S′

IdS′ // S′

But note that in that case we have σ′ = IdS′ ◦σ′ = α◦σ, so that α is a garbling
from σ to σ′.

(2)⇒(3). Fix a set of actions A and a utility function u : A × Ω → R. Let
Λσ be the set of all conditional probability over actions that are feasible under
σ

Λσ = {λ : Ω→ ∆ (A) |λ = α ◦ σ} .

We can write the expected utility of an agent as

max
λ∈Λσ

∑
ω

(∑
a∈A

u (a, ω)λ (a|ω)
)
p (ω) .

Clearly, if Λσ ⊇ Λσ′ the agent can obtain higher expected utility using σ than
using σ′.

(3)⇒(2). We can prove the contrapositive: If (2) is not true, then there
exists a λ′ ∈ Λσ′ such that λ′ /∈ Λσ. Seeing Λσ as a subset of RΩ×A, it is easy
to show that it is compact and convex. This means that there must exist a
separating hyperplane v ∈ RΩ×A such that∑

ω,a

v (a, ω)λ (a|ω) <
∑
ω,a

v (a, ω)λ′ (a|ω) ∀λ ∈ Λσ

Thus, a Bayesian agent with utility v and uniform prior can obtain strictly
higher utility using σ′ than using any strategy under σ.

5 Dynamic Informativeness
Now consider an agent whose information arrives over time. Let t = 1, . . . , T
denote the time periods. At each period, the agent observes a new signal st ∈ St
and then takes an action at ∈ At. A dynamic information structure σ : Ω →
∆ (S1 × · · · × ST ) specifies the probability of all sequences of signals, given a
state of the world. A dynamic decision problem is given by the sets A1, . . . , AT
and a utility function u : A1 × · · · ×AT × Ω→ R.

The agent can condition the choice of at ∈ At on the realization of all
past signals s1, . . . , st but not on the signals st+1, . . . , sT , which have not been
revealed yet. Hence a strategy of the agent specifies a (possibly random) action
to be taken after each history of past signals and past actions, that is, it is
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a collection of mappings (αt)Tt=1 where α1 : S1 → ∆ (A1), α2 : S1 × S2 ×
A1 → ∆ (A2) etc. For our purposes, it will be more convenient to represent
strategies in an alternative way, which we explain below. To simplify notation,
let St = S1 × · · · × St , At = A1 × · · · ×At etc for all t = 1, . . . , T .

Definition 2. A mapping α : ST → ∆
(
AT
)
is adapted if its marginal distri-

bution on At depends only on St, that is, if there exist maps αt : St → ∆ (At)
such that

αt (a1, . . . , at|s1, . . . , st) =
∑

at+1,...,aT

α (a1, . . . , at, at+1, . . . , aT |s1, . . . , sT ) .

Lemma 3. Every strategy induces a unique adapted mapping. Every adapted
mapping is induced by some strategy.

Proof. Given a strategy (αt)Tt=1, let α1 = α1 and define inductively

αt (a1, . . . , at|s1, . . . , st) =
αt−1 (a1, . . . , at−1|s1, . . . , st−1)αt (at|s1, . . . , st, a1, . . . , at−1) .

We can prove by induction that αt is adapted for every t. Indeed, suppose that
αt−1 is adapted. The marginal of αt on At−1 is simply αt−1, which depends
only on s1, . . . , st−1. The marginal of αt on Ar for r < t− 1 is the same as the
marginal of αt−1 on Ar and therefore depends only on Sr, since αt−1 is adapted.
Therefore αt is adapted.

Now suppose that we have an adapted mapping α : ST → ∆
(
AT
)
. Given

the mappings corresponding to the marginals αt : St → ∆ (At), let αt :
St × At−1 → ∆ (At) give a conditional probability of at given a1, . . . , at−1 and
s1, . . . , st. 2 Then we can show that αt = αt−1αt as before, so that the strategy
(αt)Tt=1 induces the adapted mapping αT .

Adapted mappings can be conveniently represented using a commutative di-
agram. Let πt : St+1 → St and ρt : At+1 → At be the projection mappings
(these can be regarded as stochastic mappings that put probability one on a
single value). Given a stochastic mapping αt+1 : St+1 → ∆

(
At+1), the compo-

sition ρt ◦αt+1 : St+1 → ∆ (At) gives precisely the marginal distribution of αt+1

on At. If αt+1 is adapted, then that marginal depends only on St: there exists
a mapping αt : St → ∆ (At) such that αt ◦ πt = ρt ◦ αt+1. Thus a mapping
α : ST → ∆

(
AT
)
is adapted if there exist mappings αt that make the following

diagram commute:

S1

α1

��

S2π1oo

α2

��

· · ·π2oo ST
πToo

α

��
A1 A2ρ1oo · · ·

ρ2oo AT
ρToo

2Bayes rule must be respected when the probability of a1, . . . , at−1 given s1, . . . , st is
greater than zero. When it is zero, αt may be defined arbitrarily.
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Lemma 4. The adapted mappings form a category under the operation of com-
position of stochastic mappings.

Proof. Let α : ST → ∆
(
AT
)
and β : AT → ∆

(
BT
)
be adapted mappings. The

only nontrivial step here is to show that their composition β◦α : ST → ∆
(
BT
)
is

also an adapted mapping. To see this, we can write the diagram that represents
their composition:

S1

α1

��

S2π1oo

α2

��

· · ·π2oo ST
πToo

αT

��
A1

β1

��

A2ρ1oo

β2

��

· · ·
ρ2oo AT

ρToo

β
��

B1 B2λ1oo · · ·λ2oo BT
λToo

It is easy to see that this diagram commutes. For example,

λ1 ◦ β2 ◦ α2 = β1 ◦ ρ1 ◦ α2 = β1 ◦ α1 ◦ π1.

This means that β ◦α is an adapted mapping, with the mappings βt ◦αt corre-
sponding to its marginals.

In the proof of Theorem 1, a key property used was that garblings and strate-
gies were the same kind of mathematical objects. There, they were stochastic
mappings; here, strategies must be adapted mappings. This suggests that the
right notion of garbling for the present dynamic setting is one where the gar-
bling is required to be an adapted mapping. The following theorem confirms
this suggestion.

Theorem 5. The following statements are equivalent:

1. σ′ is an adapted garbling of σ;

2. The set of conditional distributions over actions that are feasible under σ
contains those that are feasible under σ′;

3. Every Bayesian agent prefers σ to σ′, for any possible dynamic decision
problem.

The proof follows exactly the same lines as the proof of Theorem 1 so it is
omitted.

6 Strategic Informativeness
Now consider two agents, each receiving a signal about a common state. We
can represent such a joint information structure as a stochastic mapping σ :
Ω→ ∆ (S1 × S2), where si ∈ Si is the signal observed by agent i. After seeing
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their signal, each agent takes an action from a set Ai. Thus, a strategy for
agent i is a stochastic mapping αi : Si → ∆ (Ai); the strategy profile is a
stochastic mapping α ≡ α1 ⊗ α2 : S1 × S2 → ∆ (A1 ×A2), obtained by taking
the independent product of each player’s strategy. The independence can be
understood as an assumption that all the information the players have available
to them is expressed in the joint information structure σ.

Together, a joint information structure and a strategy profile induce a con-
ditional distribution over actions α ◦ σ : Ω → ∆ (A1 ×A2). When is it that σ
permits more conditional distributions over actions than an alternative joint in-
formation structure σ′? Again, the key property here is that garblings and
strategies be the same kind of mathematical objects. In this case, we will
say that g : S1 × S2 → ∆ (S′1 × S′2) is an independent garbling if there exist
g1 : S1 → ∆ (S′1) and g2 : S2 → ∆ (S′2) such that g is the independent product
of g1 and g2, i.e.

g (s′1, s′2|s1, s2) = g1 (s′1|s1) g2 (s′2|s2) .

That this is the right notion of garbling is confirmed by the following result.

Theorem 6. The following statements are equivalent

1. σ′ is an independent garbling of σ;

2. The set of conditional distributions over actions that are feasible under σ
contains those that are feasible under σ′.

The proof again follows easily the first half of the proof of Theorem 1 once we
note that independent garblings form a category.

Notice that this theorem, unlike Theorems 1 and 5, makes no mention of
preferences. In order to do that, we would have to specify a game-theoretic
solution concept under which players would prefer σ to σ′. This comes with
some difficulties, e.g. multiplicity of equilibria, but most importantly it may be
that having more feasible actions actually hurt players (players may value com-
mitment). Some proposed solutions involve restricting the class of games under
consideration (Gossner, 2000, Lehrer et al., 2010, Pęski, 2008), restricting the
class of information structures, or adopting new solution concepts Bergemann
and Morris (2015).

References
Dirk Bergemann and Stephen Morris. Bayes correlated equilibrium and the
comparison of information structures. Theoretical Economics, 2015.

Agnieszka Bielinska-Kwapisz. Sufficiency in blackwell’s theorem. Mathematical
Social Sciences, 46(1):21–25, 2003.

D. Blackwell. Comparison of experiments. In Second Berkeley Symposium on
Mathematical Statistics and Probability, volume 1, pages 93–102, 1951.

7



D. Blackwell. Equivalent comparisons of experiments. The Annals of Mathe-
matical Statistics, pages 265–272, 1953.

Jacques Crémer. A simple proof of blackwell’s "comparison of experiments"
theorem. Journal of Economic Theory, 27(2):439–443, 1982.

O. Gossner. Comparison of information structures. Games and Economic Be-
havior, 30(1):44–63, 2000.

Eitan Greenshtein. Comparison of sequential experiments. The Annals of Statis-
tics, 24(1):436–448, 1996.

E. Lehrer, D. Rosenberg, and E. Shmaya. Signaling and mediation in games
with common interests. Games and Economic Behavior, 68(2):670–682, 2010.

Ehud Lehrer, Dinah Rosenberg, and Eran Shmaya. Garbling of signals and
outcome equivalence. Games and Economic Behavior, 81:179–191, 2013.

Moshe Leshno and Yishay Spector. An elementary proof of blackwell’s theorem.
Mathematical Social Sciences, 25(1):95–98, 1992.

Saunders Mac Lane. Categories for the working mathematician, volume 5.
Springer Science & Business Media, 1978.

Marcin Pęski. Comparison of information structures in zero-sum games. Games
and Economic Behavior, 62(2):732–735, 2008.

8


	Introduction
	The category of stochastic maps
	Garblings and strategies
	Proof of Blackwell's Theorem
	Dynamic Informativeness
	Strategic Informativeness

